Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233473

RESUMO

Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.


Assuntos
Aminopeptidases , Leucil Aminopeptidase , Humanos , Aminopeptidases/química , Aminopeptidases/metabolismo , Leucil Aminopeptidase/química , Peptídeos/química , Antígenos CD13
2.
Bioorg Med Chem ; 51: 116513, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798379

RESUMO

A series of new quinazolinedione derivatives have been readily synthesized and evaluated for their in vitro antiplasmodial growth inhibition activity. Most of the compounds inhibited P. falciparum FcB1 strain in the low to medium micromolar concentration. The 2-ethoxy 8ag', 2-trifluoromethoxy 8ai' and 4-fluoro-2-methoxy 8ak' showed the best inhibitory activity with EC50 values around 5 µM and were non-toxic to the primary human fibroblast cell line AB943. However, these compounds were less potent than the original hit MMV665916, which showed remarkable growth inhibition with EC50 value of 0.4 µM and presented the highest selectivity index (SI > 250). In addition, a novel approach for determining the docking poses of these quinazolinedione derivatives with their potential protein target, the P. falciparum farnesyltransferase PfFT, was investigated.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
3.
Z Naturforsch C J Biosci ; 75(11-12): 397-407, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32609656

RESUMO

Metallo-aminopeptidases (mAPs) control many physiological processes. They are classified in different families according to structural similarities. Neutral mAPs catalyze the cleavage of neutral amino acids from the N-terminus of proteins or peptide substrates; they need one or two metallic cofactors in their active site. Information about marine invertebrate's neutral mAPs properties is scarce; available data are mainly derived from genomics and cDNA studies. The goal of this work was to characterize the biochemical properties of the neutral APs activities in eight Cuban marine invertebrate species from the Phyla Mollusca, Porifera, Echinodermata, and Cnidaria. Determination of substrate specificity, optimal pH and effects of inhibitors (1,10-phenanthroline, amastatin, and bestatin) and cobalt on activity led to the identification of distinct neutral AP-like activities, whose biochemical behaviors were similar to those of the M1 and M17 families of mAPs. Additionally, M18-like glutamyl AP activities were detected. Thus, marine invertebrates express biochemical activities likely belonging to various families of metallo-aminopeptidases.


Assuntos
Sequência de Aminoácidos/genética , Aminopeptidases/química , Organismos Aquáticos/enzimologia , Invertebrados/enzimologia , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Animais , Cuba , Leucina/análogos & derivados , Leucina/farmacologia , Peptídeos/farmacologia , Fenantrolinas/farmacologia , Especificidade por Substrato
4.
Bioorg Chem ; 98: 103750, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32182520

RESUMO

Aminobenzosuberone-based PfA-M1 inhibitors were explored as novel antimalarial agents against two different Plasmodium falciparum strains. The 4-phenyl derivative 7c exhibited the most encouraging growth inhibitory activity with IC50 values of 6.5-11.2 µM. X-ray crystal structures and early assessment of DMPK/ADME-Tox parameters allowed us to initiate structure-based drug design approach and understand the liabilities (such as potential metabolic and aqueous solubility issues) as well as identify the opportunities for improvement of this aminobenzosuberone series. It also suggested that compound 7c should be regarded as an attractive chemical tool to investigate the different biological roles of this multifunctional PfA-M1 protein.


Assuntos
Aminopeptidases/antagonistas & inibidores , Anisóis/farmacologia , Antimaláricos/farmacologia , Cicloeptanos/farmacologia , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Aminopeptidases/metabolismo , Anisóis/síntese química , Anisóis/química , Antimaláricos/síntese química , Antimaláricos/química , Cicloeptanos/síntese química , Cicloeptanos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
5.
Molecules ; 23(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314342

RESUMO

The synthesis of racemic substituted 7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-one hydrochlorides was optimized to enhance reproducibility and increase the overall yield. In order to investigate their specificity, series of enzyme inhibition assays were carried out against a diversity of proteases, covering representative members of aspartic, cysteine, metallo and serine endopeptidases and including eight members of the monometallic M1 family of aminopeptidases as well as two members of the bimetallic M17 and M28 aminopeptidase families. This aminobenzosuberone scaffold indeed demonstrated selective inhibition of M1 aminopeptidases to the exclusion of other tested protease families; it was particularly potent against mammalian APN and its bacterial/parasitic orthologues EcPepN and PfAM1.


Assuntos
Aminopeptidases/antagonistas & inibidores , Aminopeptidases/química , Cumarínicos/química , Cumarínicos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Animais , Ativação Enzimática/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
6.
Malar J ; 16(1): 382, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934959

RESUMO

BACKGROUND: Plasmodium falciparum M1 family aminopeptidase is currently considered as a promising target for anti-malarial chemotherapy. Several series of inhibitors developed by various research groups display IC50/Ki values down to nM range on native PfA-M1 or recombinant forms and block the parasite development in culture at µM to sub-µM concentrations. A handful of these inhibitors has been tested on murine models of malaria and has shown anti plasmodial in vivo activity. However, most of these inhibitors do also target the other neutral malarial aminopeptidase, PfA-M17, often with lower Ki values, which questions the relative involvement and importance of each enzyme in the parasite biology. RESULTS: An amino-benzosuberone derivative from a previously published collection of chemicals targeting specifically the M1-aminopeptidases has been identified; it is highly potent on PfA-M1 (Ki = 50 nM) and devoid of inhibitory activity on PfA-M17 (no inhibition up to 100 µM). This amino-benzosuberone derivative (T5) inhibits, in the µM range, the in vitro growth of two P. falciparum strains, 3D7 and FcB1, respectively chloroquino-sensitive and resistant. Evaluated in vivo, on the murine non-lethal model of malaria Plasmodium chabaudi chabaudi, this amino-benzosuberone derivative was able to reduce the parasite burden by 44 and 40% in a typical 4-day Peters assay at a daily dose of 12 and 24 mg/kg by intraperitoneal route of administration. CONCLUSIONS: The evaluation of a highly selective inhibitor of PfA-M1, over PfA-M17, active on Plasmodium parasites in vitro and in vivo, highlights the relevance of PfA-M1 in the biological development of the parasite as well as in the list of promising anti-malarial targets to be considered in combination with current or future anti-malarial drugs.


Assuntos
Aminopeptidases/antagonistas & inibidores , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Anisóis/farmacologia , Antimaláricos/farmacologia , Cicloeptanos/farmacologia , Plasmodium falciparum/efeitos dos fármacos
7.
Chemistry ; 22(15): 5151-5, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26917097

RESUMO

A series of cyclopeptoid-based iminosugar clusters has been evaluated to finely probe the ligand content-dependent increase in α-mannosidase inhibition. This study led to the largest binding enhancement ever reported for an enzyme inhibitor (up to 4700-fold on a valency-corrected basis), which represents a substantial advance over the multivalent glycosidase inhibitors previously reported. Electron microscopy imaging and analytical data support, for the best multivalent effects, the formation of a strong chelate complex in which two mannosidase molecules are cross-linked by one inhibitor.


Assuntos
Inibidores Enzimáticos/química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Imino Açúcares/química , Peptídeos Cíclicos/química , alfa-Manosidase/química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/farmacologia , Imino Açúcares/farmacologia , Ligantes , alfa-Manosidase/farmacologia
8.
Bioorg Med Chem ; 23(13): 3192-207, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25982416

RESUMO

In order to probe the S1 and S1' mammalian aminopeptidase N subsites, racemic 1- or 4-substituted 7-aminobenzocyclohepten-6-one derivatives were synthesized and evaluated for their ability to inhibit mammalian aminopeptidase N. We focused on improving the physicochemical and ADME properties of this series by targeting lipophilicity and LELP score. Some 4-heteroaryl substituted analogues displayed reduced lipophilicity and enhanced inhibition potency with Ki values in the nanomolar range.


Assuntos
Aminobenzoatos/síntese química , Benzocicloeptenos/síntese química , Antígenos CD13/antagonistas & inibidores , Inibidores de Proteases/síntese química , Aminobenzoatos/química , Animais , Benzocicloeptenos/química , Antígenos CD13/química , Antígenos CD13/isolamento & purificação , Rim/química , Rim/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/química , Estereoisomerismo , Relação Estrutura-Atividade , Suínos , Termodinâmica
9.
Bioorg Med Chem ; 21(7): 2135-44, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23428964

RESUMO

Aminopeptidase-N (APN/CD13) is highly expressed on the surface of numerous types of cancer cells and particularly on the endothelial cells of neoangiogenic vessels during tumourigenesis. This metallo-aminopeptidase has been identified as a potential target for cancer chemotherapy. In this work, we evaluated the efficacy of a novel series of benzosuberone analogues, which were previously reported to be highly potent, selective APN inhibitors with Ki values in the micromolar to sub-nanomolar range. Endothelial cell morphogenesis as well as cell motility were inhibited in vitro in a dose-dependent manner at concentrations that correlated with the potency of the compounds, thus confirming the key role of APN in these established models of angiogenesis. We report toxicity studies in mice showing that these compounds are well tolerated. We report the effects of the compounds, used alone or in combination with rapamycin, on the growth of a select panel of tumours that were subcutaneously xenografted onto Swiss nude mice. Our data indicate that the in vivo efficacy of these new APN inhibitors during the initial phase of tumour growth can be ascribed to their anti-angiogenic activities. However, we also provide evidence that these compounds are effective against established solid tumours. For colonic tumours, the anti-tumour effect depends on the level of APN expression in epithelial cells, and APN expression is associated with down-regulation of the transcription factor HIF-1α. These effects seem to be distinct from those of rapamycin. Our finding that the anti-tumour effect of the inhibitors in the colon requires APN expression strongly suggests that APN plays a crucial function in tumour cells that is distinct from its known role in neovascularisation.


Assuntos
Anisóis/química , Anisóis/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antígenos CD13/antagonistas & inibidores , Cicloeptanos/química , Cicloeptanos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anisóis/farmacologia , Antineoplásicos/farmacologia , Antígenos CD13/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cicloeptanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/patologia
10.
Chemistry ; 17(51): 14413-9, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22127975

RESUMO

Mycolactones are complex macrolides responsible for a severe necrotizing skin disease called Buruli ulcer. Deciphering their functional interactions is of fundamental importance for the understanding, and ultimately, the control of this devastating mycobacterial infection. We report herein a diverted total synthesis approach of mycolactones analogues and provide the first insights into their structure-activity relationship based on cytopathic assays on L929 fibroblasts. The lowest concentration inducing a cytopathic effect was determined for selected analogues, allowing a clear picture to emerge by comparison with the natural toxins.


Assuntos
Toxinas Bacterianas/síntese química , Úlcera de Buruli/induzido quimicamente , Macrolídeos/síntese química , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Úlcera de Buruli/microbiologia , Úlcera de Buruli/patologia , Fibroblastos/efeitos dos fármacos , Macrolídeos/química , Macrolídeos/farmacologia , Camundongos , Estrutura Molecular , Infecções por Mycobacterium/patologia , Mycobacterium ulcerans/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...